

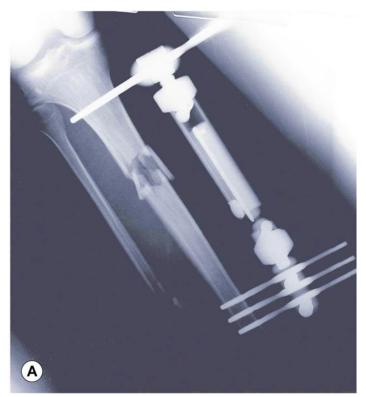


#### What we will cover:

- Management in **Humanitarian Settings**
- Common Complications
- Adapted Clinical practice

#### **Quick Overview**

- Hugely varied depending on nature of event
- Typically lower limb > upper limb
- Open > closed
- Comminuted > simple
- Polytrauma
- Involvement of nerve, vascular and soft tissues...


#### Surgical Management

- May only be damage control surgery initially
- NOT to use internal fixation in most emergency setting
- Initial conservation management or ex-fix
- Delayed definitive management
- Delayed primary closure

# External Fixation – Pros (1)

#### Mechanical:

- Quick, flexible applications
- Good outcomes
- Early recognition and treatment of complications
- Minimally invasive
- Either a temporary or definitive stabilisation device
- Reconstructive and salvage applications
- Stable enough to allow loading through the bone, with micromotion



#### **External Fixation - Cons**





#### Mechanical:

- Component failure
- Inadequate immobilization
- Pin-bone interface failure
- Weight/bulk

#### **Biological**

- Infection
- Pin loosening
- Neurovascular injury
- Tethering of muscle
- Soft tissue contracture
- Mal and Non union

# Implications for rehabilitation

- Pain (inc pins through the tissue pain on muscle contraction)
- Loss of ROM at surrounding joints
- Muscle contracture
- Our Role:
  - Maintain soft tissue length prescribe stretches/passive movements
  - Maintain muscle strength as able
  - Keep skin from sticking to pin sites using gentle AROM exercises
  - Maintain venous return/swelling management
  - Adapt ADLs
  - Positioning
  - Identify complications

#### **External Fixator Care**

- Clean pin sites at least once a week more often if infected
- Clean using non-shedding gauze and either chlorhexidine or saline.
- Bathing is not permitted. Showering of the limb is normally only allowed prior to dressing changes.
- Emollient can be applied to skin but not immediately around pin sites.

Source: <a href="https://www.rcn.org.uk/-/media/royal-college-of-nursing/documents/publications/2011/november/pub-004137.pdf?la=en">https://www.rcn.org.uk/-/media/royal-college-of-nursing/documents/publications/2011/november/pub-004137.pdf?la=en</a>

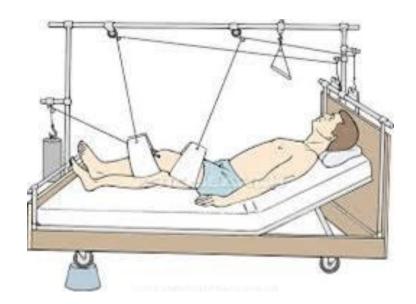
# External Fixator Care (teach to patient)

- 1 Before you start, wash your hands thoroughly with soap and water, dry your hands on a clean towel that is for your use only.
- 2 Prepare your equipment on a clean surface.
- 3 Remove the existing dressings: check the pin sites for any redness, tenderness, swelling or leakage.
- 4 Wash your hands again.
- 5 Clean around each pin using a new piece of gauze dipped into saline solution, use each piece of gauze only once on each pin site as you have been shown and discard afterwards.

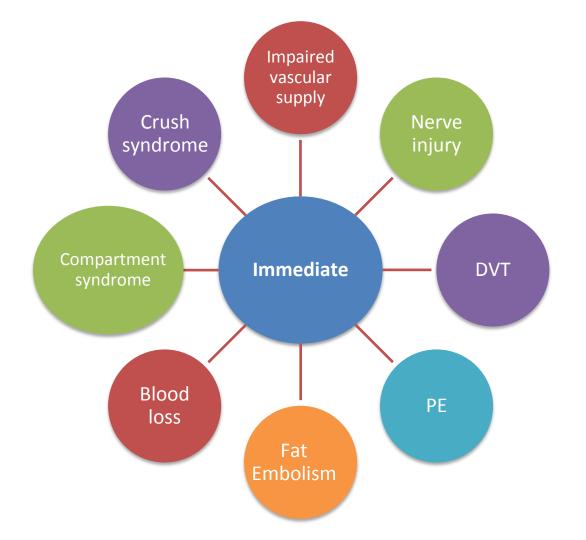
- 6 Do the above as many times as necessary for all pins to be clean and crust free. If the pin is stuck to the skin gently massage until it is free.
- 7 Dry well with a clean piece of gauze.
- 8 When the pin sites are dry, wrap a clean piece of gauze around the pin site and secure with the tape.
- 9 If you have an external fixator you must also clean the frame using the same technique as for the pin sites.
- 10 Finally, wash your hands again thoroughly.

# Teach the patient to seek support if:

- If the discharge becomes thick, coloured or smells
- If the pin sites become red, swollen, tender or painful.
- If any of the pins or other parts of the external fixator become loose


# Weight bearing

\*\*\*\*for successful bone healing – early weight bearing and functional activity\*\*\*\*


- Loading of a fracture, non-union or osteotomy site stimulates OSTEOGENESIS
  - (along with sufficient blood supply and bony stability)
- Surgical opinion, fracture stability and ExFix design will determine weight bearing status
- In emergencies there is often less confidence around fracture stability and less clarity around weight bearing status. Not normally the role of the rehabilitation professional to determine this!
- Common exceptions to full weight bearing;
  - Those with bone defects
  - Patients at risk of pin loosening/infection
  - Patients with Unilateral frames unless otherwise stipulated

#### Traction

- Most commonly used for closed femoral factures but also may be used for open femoral fractures in adults:
- Skin Traction Thomas Splint– normally temporary (48-72 hours) unless paedaitric can be definitive.
- Skeletal Traction Using Bohler-Braun frame, Thomas or Hamilton-Russel splint for proximal Femoral or acetabular fractures.
- Pay particular attention to preventing equinus deformity of ankle and preventing pressure injury to heel and sacrum.



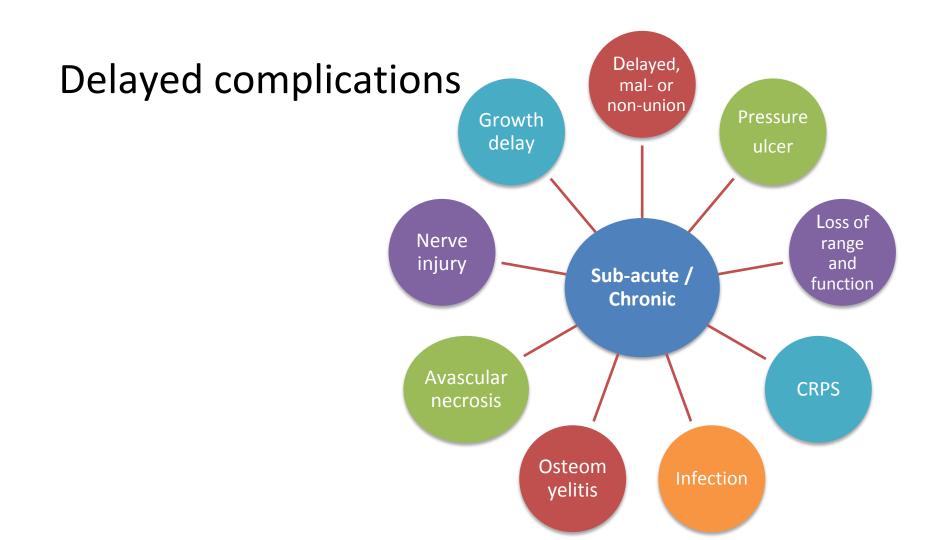
# Acute Fracture complications



#### Compartment syndrome

#### **Symptoms:**

- Intense pain (disproportional to injury)
- Pain worsened on passive stretch of the muscle involved
- Muscle might feel tight or full
- Altered sensation (numbness +/- paralysis usually indicate permanent tissue damage)

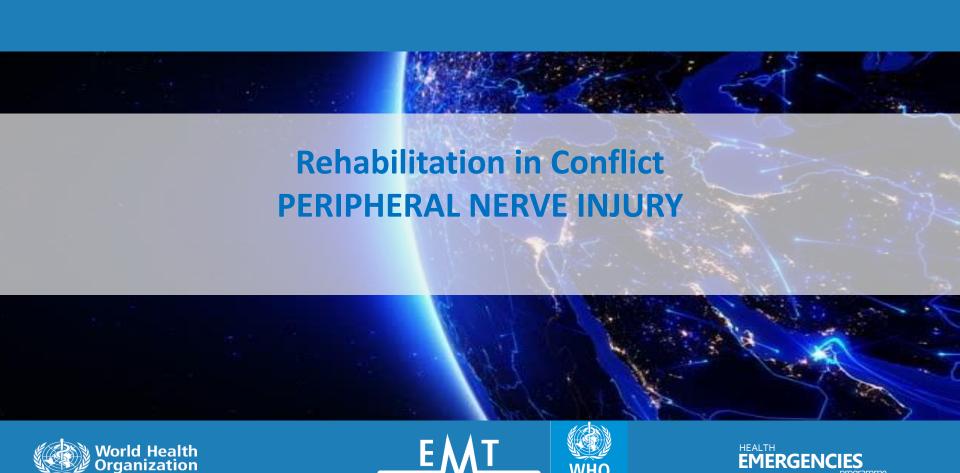

#### **Treatment:**

Fasciotomy within 3 hours (can be left open for 48-72 hours in UK, longer in Humanitarian context often involving a skin graft)

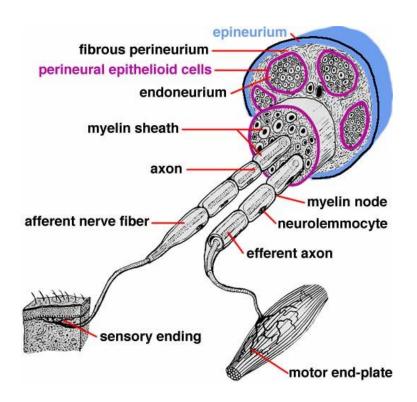









#### Common Challenges


- Polytrauma
- Uncertainty of weight bearing status
- Complications ++++
- Missed fractures or other injuries
- Rehab for patients on traction

#### **Adapted Practice**

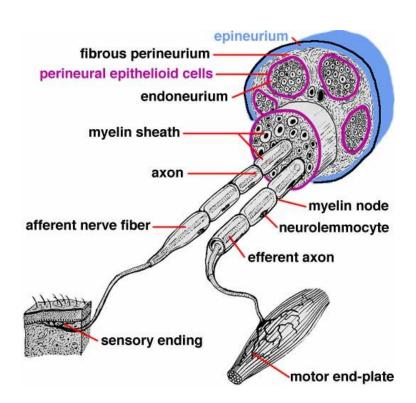
- Know how to manage ex-fix and traction
- ++ Education on self management
- Be clear re weight bearing status and progression
- Rehab itself is normally simple
- Rehab professional and patient must know when to seek follow up



Europe



#### What we will cover:


- Management in Humanitarian Settings
- Common Complications
- Adapted Clinical practice

#### **Quick Overview**

- Nerve injuries are very common in emergencies and often missed or neglected as part of initial clinical management
- Most frequently seen as part of a picture of a complex injury
- Mechanism may be direct trauma, or secondary injury due to traction or compression.
- Can result in significant disability
- Repair options may be limited in humanitarian environments

# Signs of a missed nerve injury?

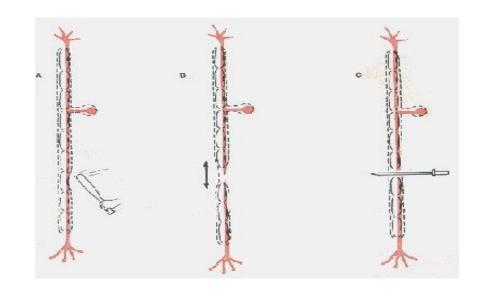
# **Quick Anatomy**



# Nerve Properties

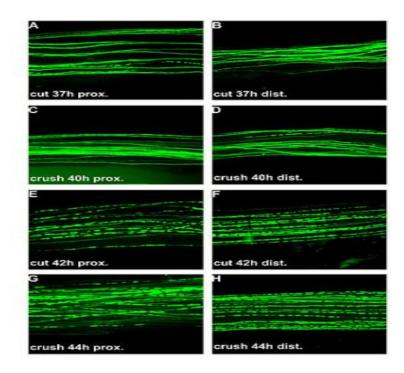
Nerves cannot be stretched to lengthen in the same way that muscles can.

Under stretch, a nerve can lengthen by up to 6%, but will then recoil.


Beyond 10%, stretch results in damage to the nerve

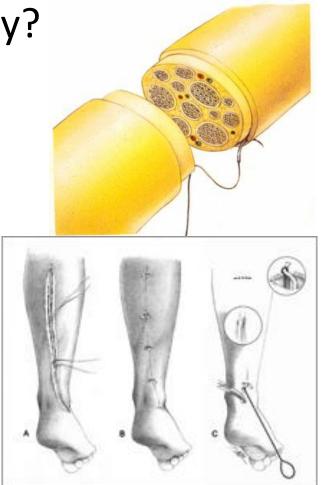
# Causes of Peripheral Nerve Injury

| Lesion | Characteristic         | Cause                                                                    |
|--------|------------------------|--------------------------------------------------------------------------|
| Open   | Tidy                   | Knife, glass etc                                                         |
|        | Untidy                 | Blast, bullet, shrapnel, severe burn, open fracture.                     |
| Closed | Compression –ischaemia | Compartment syndrome, trapped limb, Bone/foreign body, Sustained posture |
|        | Traction-Ischaemia     | Fracture-dislocation                                                     |


# Seddon's Basic Classification of Nerve Injury

- A) Neuropraxia nerve is intact but unable to signal normally from compression normally full recovery between days months.
- B) Axonotmesis axon damaged but structure of the nerve intact (**further divided by Sutherland** depending on intact structures) recovery takes several months and may not be complete, especially if the injury is proximal, leading to distal endplate degeneration prior to nerve regeneration.
- C) Neurotmesis axon and connective tissue damaged complete cut of the nerve. Some regeneration but without surgery function will very rarely return. Surgery normally required.




#### Wallerian Degeneration

 Following axonotmesis or neurotmesis, a process called Wallerian degeneration begins where the distal axon degenerates, leaving in its place a hollow tube.

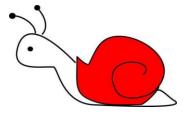


Surgery?

- Primary (Neurorraphy) stitching the two ends together – only possible in first few days, with skeletal stability, clean cut and no significant nerve tension. Normally at the time of definitive management of an injury.
- Grafting: Up to 2 years post injury.
- Autograft: usually taken from sural nerve
- Allograft from a donor less successful.

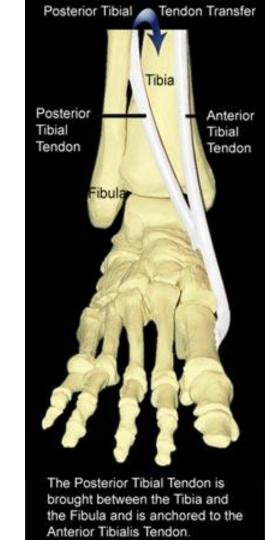


# Outcome of surgery


Functional (useful) recovery in only approximately 50% of cases.

#### Positive indicators are:

- young age
- early repair
- single function nerves
- distal location of the repair.


#### Nerve regeneration

- Nerve regeneration: at a rate of 0.5-2mm day and is proximal distal.
- Motor endplates must be re-innervated within 18 months of injury (some say 1 year) to achieve motor recovery.
- Maximal recovery from nerve injury can take 24 months.



# Other (later) options

- Tendon transfer e.g.
- Pronator teres can act as wrist extensor if tendon transfer is completed to extensor carpiradialis.
- Tibialis posterior can act as a dorsiflexor with peroneal nerve damage.
- Not often an option in low income settings.



# **Common Complications**

#### As with other traumatic injuries, plus:

- Contracture due to loss of movement
- Injury due to loss of sensation
- Neuropathic pain



# Complex Regional Pain Syndrome II\*

- Following nerve lesions approx 5% of peripheral nerve injuries will develop CRPS type 2.
- Unknown cause
- Chronic, progressive condition causing pain that is disproportionate to the injury.
- Symptoms include severe pain, allodynia, stiffness, swelling, autonomic dysfunction (sweating, blood flow change etc)
- **Treatment:** pain control, encourage range, handling, and maintain function. Do not allow to avoid use!

\*If seen without "major nerve damage" diagnose CRPS I; if seen in the presence of "major nerve damage" diagnose CRPS II

# Diagnostic criteria for complex regional pain syndrome II (CRPS)

- 1. The presence of an initiating noxious event, or a cause of immobilization (Otherwise CRPS 1)
- 2. Continuing pain, allodynia, or hyperalgesia in which the pain is disproportionate to any known inciting event
- 3. Evidence at some time of edema, changes in skin blood flow, or abnormal sudomotor activity in the region of pain (can be sign or symptom)
- 4. This diagnosis is excluded by the existence of other conditions that would otherwise account for the degree of pain and dysfunction

# Adapted Clinical Practice

#### **Essentials:**

- Advice & education
- Appropriately graded exercise
- Sensory re-training
- Splinting

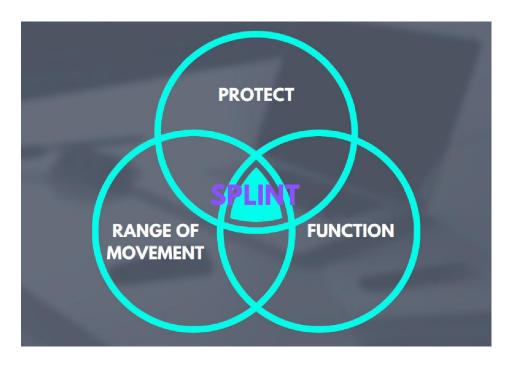
#### Nightmare scenario

- Infection
- Poor wound healing
- Secondary injury
- Late identification
- Joint contracture
- Lack of regeneration
- Hypersensitivity
- Trick movements
- Complex Regional Pain Syndrome (CRPS)

#### Advice & Education

- 1.Realistic recovery timescale
- 2. They can't feel ANYTHING......the risks
- 3. Why a splint is important and how to care for it
- 4. Why the exercises are important even if it feels like nothing is changing
- 5. Why smoking is bad.....not just the obvious

#### Exercise


- 4-6 times daily, passive, active if able, unless contraindicated. Avoid over-stretch/traction to the affected nerve.
- Weight bear if able
- Encourage use of affected limb and normal movement patterns

#### Sensory Re-education

- Initial acute advice essential
- Maintain cortical representation
- Bilateral influence
- Overlay of other senses
- Texture retraining
- Grading
- Dexterity and differentiation
- Moberg pick-up test

# **Splinting**

Reminder!



# Thank you! Any questions?